Automated Tumor Volumetry Using Computer-Aided Image Segmentation
نویسندگان
چکیده
منابع مشابه
Automated tumor volumetry using computer-aided image segmentation.
RATIONALE AND OBJECTIVES Accurate segmentation of brain tumors, and quantification of tumor volume, is important for diagnosis, monitoring, and planning therapeutic intervention. Manual segmentation is not widely used because of time constraints. Previous efforts have mainly produced methods that are tailored to a particular type of tumor or acquisition protocol and have mostly failed to produc...
متن کاملAn Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملComputer-Aided Knee Joint Magnetic Resonance Image Segmentation - A Survey
Osteoarthritis (OA) is one of the major health issues among the elderly population. MRI is the most popular technology to observe and evaluate the progress of OA course. However, the extreme labor cost of MRI analysis makes the process inefficient and expensive. Also, due to human error and subjective nature, the inter- and intra-observer variability is rather high. Computer-aided knee MRI segm...
متن کاملComputer Aided Image Segmentation and Classification for Viable and Non-Viable Tumor Identification in Osteosarcoma
Osteosarcoma is one of the most common types of bone cancer in children. To gauge the extent of cancer treatment response in the patient after surgical resection, the H&E stained image slides are manually evaluated by pathologists to estimate the percentage of necrosis, a time consuming process prone to observer bias and inaccuracy. Digital image analysis is a potential method to automate this ...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Academic Radiology
سال: 2015
ISSN: 1076-6332
DOI: 10.1016/j.acra.2015.01.005